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A LAMINATE COMPOSITE WITH A CRACK NORMAL
TO THE INTERFACESY

P. D. Hirton] and G. C. Sin§

Lehigh University, Bethlehem, Pennsylvania

Abstract—The redistribution of stresses in a laminate composite due to the presence of a crack or flaw situated
normal to the bond lines is studied. The many-layered composite is idealized to the case of a single layer of
dissimilar material containing a crack which is sandwiched between two other layers of infinite height. The elastic
properties of the two outer layers are assumed to be averaged properties over a large number of layers. Using the
integral transform technique, the problem is formulated in terms of integral equations and solved for the singular
stress field near the crack tip. The effects of crack size, layer height and the material properties of the composite
on the stress-intensity factor are illustrated graphically. Presumably, this factor can be used to characterize the
strength of a composite in the same way as it has been applied successfully to the single phase material within the
framework of the linear theory of fracture mechanics.

Calculations are also carried out for approximating the stress-intensity factors for a crack inclined at an
arbitrary position in the sandwiched layer. This is accomplished by taking the two extreme cases of a crack paraliel
and normal to the interfaces as the upper and lower bound solutions depending upon the relative stiffness of the
layers.

INTRODUCTION

A coMPOSITE being a man-made structure inherently contains some sort of imperfections in
the form of either small voids or cracks. Any one of these flaws when it reaches a certain size
can have a significant influence on the load transfer behavior within the composite.
Generally speaking, it is the local intensification of the stresses around the dominant flaw
that triggers fracture and often leads to failure of the system. Hence, it is essential to include
pre-existing flaws in the strength analysis of composites.

The aim in composite studies of an analytical nature [1-3] is to provide, in a fundamental
way, a set of mathematical formulas relating the influencing parameters of the composite in
the pre-failure state. In an analysis, which accounts for pre-existing flaws, these parameters
include the composite geometry, the flaw size, the level of applied load and the properties of
the material. The relationships derived would presumably provide a better insight into the
modes of fracture of composites. Solutions based on analysis of this type have been shown to
agree with experimental data for metals. This concept of failure, known as “fracture
mechanics™, should apply equally well to non-metallic materials such as composites.
Needless to say, the degree of success in applying the theory of fracture [4, 5] depends
largely upon the accuracy achieved in the theoretical analysis. In a multiphase material,
this task is made more difficult as a result of the complexity of the composite geometry.

+ Research sponsored by the U.S. Air Force under Contract F33615-69-G-1417 through the Air Force
Materials Laboratory at Wright-Patterson Air Force Base.

1 Assistant Professor of Mechanics.

§ Professor of Mechanics.

913



914 P.D. HLtoN and G. C. SiH

For this reason, simplifying assumptions have often to be introduced to make the analysis
manageable.

In this study, the composite geometry consists of a cracked layer of material bonded
between two half-planes of different elastic properties. Both ends of the crack are located
at an equal distance away from the interfaces which are aligned normal to the crack plane.
The method of solution utilizes the displacement expressions derived by Sneddon [6],
dealing with a crack in a finite width strip and follows that used by the authors in a previous
paper [7] on a similar problem in which the crack is placed parallel to the bond lines.
Numerical results for the stress-intensity factors are obtained from a standard Fredholm
integral equation of the second kind and plotted against the ratio of the elastic moduli of
neighboring layers for various values of the layer height to crack length ratio. An approxi-
mate solution for the more general situation where the crack is directed at an arbitrary
angle to the interface is also discussed.

There is an analogous problem in cylindrical coordinates which consists of a penny-
shaped crack contained in an infinite solid cylinder that is surrounded by and bonded to an
infinite body of a second material. This penny-shaped crack problem can be formulated in
much the same manner as the laminate problem considered here by making use of the
corresponding displacement function for the cylinder which can be found in reference [6].
The analysis of this problem has not yet been attempted by the authors so there can be no
assurance that later difficuities will not arise.

FORMULATION OF PROBLEM

Assuming plane strain conditions, the laminate composite in Fig. 1 is made of a single
layer of width 2h with shear modulus g, and Poisson’s ratio v, bonded to two half-planes
having elastic properties u, and v,. A crack of length 2a(a < h) is centered along the x-axis
as shown in Fig. 1. Symmetrical normal tractions and skew-symmetric shear tractions are
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FiG. 1. Layer composite with a crack subjected to normal and shear tractions.
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applied to the crack surfaces. In the following, the subscripts 1 and 2 will be used to refer
the layer and surrounding half-planes, respectively.

The solutions within the layer will be required to satisfy matching conditions along
x = +hand mixed boundary conditions on the x-axis. A solution with sufficient generality
to meet these conditions can be written as the superposition of the well known transform
solutions [7] for a strip of width 2h centered on the y-axis and a half plane whose edge
coincides with the x-axis. The resulting form which is assumed for the displacement field
within the layer is:

oo . h h
w = —Jem | {%[fl(n)—(l—2v,)g1(rm[s‘“ ‘”"’]+xgl(,,) e ™

cosh(nx) sinh(nx)
(o 1=~ [} #5802 -ones| P00 e
or =0 [ e 200 =gl S |50 S |
[ orestom [ # s il o

for the normal and shear loading problems, respectively. Symmetry arguments are used
to allow consideration of only the first quadrant with appropriate boundary conditions
along the coordinate axes. Additionally, the layer solutions are required to match those fora
half plane of the second material along x = h; namely,

= /) [ L)+ s+ (1200 e[:f:g;’))] o

g . @
vy = /(2/m) fo NLL2(0) + 8x(mx — 21 = v2)g ()] e_ﬂx[ —Sg:(';)n)] dﬂ

for normal and shearing tractions, respectively.

NORMAL LOADING
For normal loading, the boundary conditions along the y and x-axes are

(6:)1(0,y) =0
u;(0,y) =0
(04y)1(x,0) = 0 for|x| < h; (04,)2(x,0) =0 for|xj > h
(6):(x,0) = —p(x) for|x| <a
v,(x,0)=0 fora < |x| < h; v,(x,0) =0 for|x| > h. 3
The matching conditions along x = h are
uy(h, y) = uy(h, y)
v1(h, y) = v;(h, y)
(6.)1(h, y) = (6)2(h, y)
(6:)1(h, y) = (6,)2(h, y).- )
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The stresses within the layer as obtained from the assumed displacement field (1) are

(@

2 = —J@/m fw [f1(n) cosh(nx)+nxg, () sinh(yx)] cos(ny) dn
H 0

—J@/n) f: $1(E)(1 — Ey) e~ cos(Ex) d
S~ o [ {UAtn+ 28,0 coshtn) + o) snbtrs) costry) dn
1
—J@/m) j: (&)1 +Ey) e~ cos(Ex) dé

%iy:—l = J@2/m) _[: {{f1(n)+ g, (n)] sinh(nx) + nxg,(n) cosh(nx)} sin(yy) dy

— J@/my j: £6,(5) e sin(Ex) dé.

Note that 4,(0, y) = 0 and (s,,),(0, y) = 0 by choice of the assumed form for the solution.
Also (0,,),(x,0) = 0.
It is further required that

$:(9)
¢

v,(x,0) = 2(1—v1)J:o cos(éx)dé =0 for|x| > a (5

and

@0 d °
2u,  dx {\/(Z/R) fo

"’1&(5) sin(¢x) dé} + \/ %r {L/1(n)+2g,(m)] cosh(nx)
0

—px)

-

1

+nxg,(n) sinh(x)} dy = forx < a. ©6)

Equation (5) is satisfied identically by the integral representation for ¢,(£):
b3 a
6:(6) = \/ 2| wosgen ar ™
0

where J () is the Bessel function of order zero. Substitution of (7) into (6) gives

d (% o, ()de 2 [ .
dxJ, J62=15)" \/ ;'[0 {[f1(n)+2g,(n)] cosh(nx) +nxg,(n) sinh(nx)} dn

_ )
T 2w 0

<x<a. ®)

This equation can be regarded as an Abel integral equation for () which, with the following
identities

* cosh(nu) du
0 \/ (2 —u?)

m * u sinh(nqu) du T
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is inverted to give

d
v = 2 f 2“1"\(/’22" \/ j {Lf20m)+ 28,60 olrt) + meg, () nt)} O

for0<t<a. ®

Here, 1,(nt) and I,(n?) are the modified Bessel functions of order zero and one respectively.
The stress field in the half plane which results from the assumed displacement field (2) is

(;,)z = —\/(2/7r)J‘ n*Lf2(n)+g.(mmx] e ™™ cos(ny) dn

127)

(g 22 J‘z/"’f n2Lfan)+ g20nnx —2g,(m)] €™ cos(ny) dn
2%)

_(«;,y 2= —x/(2/7t)f 12 Lf201)+ 820 — g,1)] €™ sin(ny) dr. (10)
Ha 0

This field automatically satisfies the conditions along y = 0.
The matching conditions on the interface x = h, from equation (4), become

1. = LS+ galnh) €™ = —f(n) coshirk) kg (o) sinh(rh)

4 [+ e
_L o f"il(g)z cos(Eh) dé

2 —Z—jn’[fz(n)+gz(n)nh—gz(n)] e™™ = [fy(n)+g:(n)] sinh(yh)

4 w0 £2 .
+1hg, ) coshinh) —— f %12(%2;‘;&

3 n{fa+galimh+[1=2v]g,(} €™ = —[fi()—(1—2v,)g ()] sinhgpy (1)

® 2 _ 2 2
~heso)coshinn)— [ | TR, 0 sine a

n*+&%)
4. n{ f2(n)+ g20mnh —2[1—v,]1g,(n)} e ™™ = [f,(n) +2(1 —v,)g,(n)] cosh(nh)

. 4 r*[2 2 3 _ 2 2
e sinher) + | PEEEZME g, 0 cosy .

The unknowns f,(n) and g,(n) are eliminated, thus reducing these four equations to two
equations for f,(n) and g,(n) in terms of ¢,(£), i.e.

d¢

Siln) = ¢ mDfn)  g:(n) = ¢, mDn) (12)
where
;= [“4(’7)d1j —a(n)d, j]/ Lot g ()oxy (17) — cx3 () ()]
€25 = —[as(mMdy;— oy (m)d )/ [og(m)ors (m) — 3 (m)erz(7)]
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with the «; and d;; defined as

4 4
dyy = —[ﬂ(l—zvznvl], dpy = ——”[2"‘(1— )]
Ld 20

4 2
dys = '_(1 =), dis=0
4 4
dyy = ——[2 ”i(l—vz)], dyy = "["‘(1 2v2)+(2—v1>]
L)
4
d23 = 0, d24 = L(l —vl)

y ) = {f[eosh(nhml ~2v,) e”"]—sinh(rlh)} /n
2

o) = {%[nh sinh(yh) + (1 — 2v,)(sinh(y7h) +nh e™)]
2

—(1—2v,) sinh(nh)+nh cosh(nh)} m

as3(n) = {%[cosh(nh) =21 —v,)e™]— cosh(nh)} n
2

o4l) = {% [nh sinh(nh) — 2(1 —v,)(sinh(7h) +nh e™)]
2

—2(1—v,) cosh(nh)+nh sinh(nh)} m.
The D; in equations (12) represent the following integral expressions :

RIGELI
D) = f T P+E7

* £¢4(8) cos(Eh)

ey %

D,(n) =

_ (* 1) sin(Sh)
sn) = . (n2+§2)2 d¢
* ¢,(&) cos(Eh)

o R &

D,(n) =

(13)
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Using the integral representation for ¢,(£}, equation (7), equations (13) may be rewritten
in terms of the function ¥, (u) as

3
Dy(n) = — ) f () D g, f V1 @)Ly (. 4) du

h
Dz('l)=( f (0 1 ) ") g, - j YL, 1) du
(14

# om(n, u, h
b= (33 [° uwu)w”i‘-’;ff——’du - [ viLo au
+ a a
D) = =(3) [ st v = [ s
in which
139 * cosh(Ch) o(Eu)
i) = nﬁrz{ J, el
= 3 S {0+l ). (15

Now we make the substitutions for f,(n) and g,{(n) in the integral equation (9). The revised
equation is
2 plx)

i) = = | 55— dx
T n o 2u /(2 — %)

A change in order of integration reduces this to the following Fredholm integral equation

for ¥,(1):

+ \/ %f: {(e1;+2c;)D O (D) + Etey DAOI (£} dt. (16)

20 ¥

¥+ L ¥ (WK(t,u)du = - OW 17

where,
o« 4
K(t,u) = \/(2/7) fo ‘; {(cyj+2c, )L f{n, wlonty+ntey;Lin, Wl (nt)y dn.  (18)

The kernel K(¢, u) can be further simplified by writing
Lin, w) = M;olo(nu)+M; I (nu), j=14

where
My, = %(g)iu e ™2 - nh), My =% ';E &“ e~ ™1 —nh)/n
Mjo = “% g)*u e~ "™h/n, My, =% g *“ e ™1 +nh)/n
My, =—;—(g~ %uzrge"’", M, =—§- %iuze""‘
M,, = —-;- g)*uze—% M, = % -’25 ’}uze-"*/qz. (19)
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Then,
2 w 4
K(t,u) = \/ ;J‘o .Zl {(crj+2c,)M ol o(mu) o(nt)
j=
+(cyj+2c, )M j Lo(nu)l  (nt) +ntcy ;M ;oI ((nu)l o(nt)
+ntey ;M 1wl ()} dn. (20)

The Fredholm integral equation for y,(¢) will be solved numerically for the case of uniform
pressure, i.c. p(x) = p. For this case, it is convenient to first perform the following non-
dimensionalization.

Let

0 = wan) = - 10, ey

The governing equation, in this notation, becomes
#,0) = Jr+/ra) | PR 9)dg @)
]
where K*(r, q) = K(r, q)/q which can be shown to be symmetric in r and q.

SHEAR LOADING

Again, consider only the first quadrant with the following boundary conditions

(6,0,y) =0

v,(0,) =0
(0,)1(x,0) = 0 for|x| < h; (0,),(x,0) =0 forix| = h (23)
(6:,)1(x,0) = —g(x) for|x| <a

u,(x,0) =0 fora < |x| <h; u,(x,0) =0 for|x| = h.

These conditions lead to the integral equation for ¥,(z).

d ¥ t!//x()
0 J(x* -

+nxg,(n) sinh(nx)} dn = %(ﬂ—)? 0<x<a (24)

S dem f {Lfy(n)+g1()] cosh(x)

which can be inverted to

) 2 [
Y1) = —2;1_,\/(17_2 X — \/;J.O 1A+ g, (M o(n2)

+ntg, )y dn 0<x<a. (25)
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The solution for the layer is, as in the symmetric case, required to match that for the
half plane. This leads to relations for f;(1) and g,(n) in terms of integrals of ¥, (u), i.e.

fi(n) = by {n)Dfn)
g1(m) = by {mD{n)

where, 26)
b, i= (Ba(n)e, i~ Ba(ne, ;]/ [BamB1(m)— B3(m)B(n)]
b, i= [B3(me, i Bi(me, ;]/ [BamB1(m)— B3(m)B.(m)]
and
e =0, 12 = —ﬁ[:i—:(l—sz)-l- V1]
3
ey =Ly, ee =L (1-v)
H2
4 4n 2
€3 = 7_t(1—v1)’ €3, = ";" Ilel(l—— 2)
4 2
€3 = —‘Z_[Z—:(l_z#z)*‘ﬂl]» €4 =0

The quantities B (n) are defined as

Bun) = {,—’jl[sinhmh)m —2v,) e""]+cosh(nh)} /n
2

Baln) = {ﬁ—‘[nh cosh(yh)+(1 —2v,)(cosh(yh) + nh e™)]
2

—(1—2v,) cosh(nh)+nh sinh(nh)} m

Bsn) = { %[— sinh(nh) +2(1 —v,) e™] + Sinh(ﬂh)} m

Bin) = {,—’j—; [—nh cosh(nh)+2(1 — v,)(cosh(nh) +nh e™)]

+2(1 —v,) sinh(nh)+nh cosh(r]h)} m.
From this point, the analysis is identical to that for the symmetric problem. The final
integral equation is
w(t)+fa¢(u)H(t du=2[—99 4 o<i<a @7)
! 0o ! ’ ndo2u /(> —x%) -
where,
2 o 4
H(t,u) = \/ - . Z {(by;+by)M jol o)l o(nt)
ji=1

+(by;+b )M ; Lo | (nt) +ntb, ;M 0l  (nu)] o(nt)
+nthy ;M 1 (ma)l ()} dny.
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Numerical results will be presented for g(x) = g = const. Performing the same type of
non-dimensionalization (21) as for the symmetric case gives

1
¥, (r) = \Jr—/(rs) J‘o Y, (s)H*(r, s)ds (28)

where H*(r, s) = H(r, s)/s which is again symmetric in r and s.

THE STRESS INTENSITY FACTOR

For the case of normal loading, the stress intensity is found from the definition
= lim J[2(x—a)](a,),(x, 0) (29)
where for x > g, (6,),(x, 0) is determined from

CATCOME 70}

SO ai— e f {L£,6n)+ 2g,(n)) cosh(x)

2, 0 VT =19)
+nxg1(n) smh(nx)} dn. (30)
The stress intensity factor for the shearing mode is given by
k= lim J/[2(x—a))(0,):(x,0) (31)

where, for the skew-symmetric problem, (g,,),(x, 0) is obtained from

(Oxh(x,0) _ d © .0 dt+\/ f {L£,(n)+g,(n)] coshyx)+nxg, () sinh(nx)} dn.
2u \/ (x*— 42

In both cases, the second terms are nonsingular at x = g, and thus do not contribute to the
stress intensity factors. Therefore,

ky = 2p,/(ap (@) = ¥,(1)py/(a)
ky = 2u1/(a)1(a) = ¥,(1)g,/(a)

where, ¥,(1) is determined from equation (22) for the case of nermal loading and from
equation (28) for applied shearing tractions. In the case of a homogeneous material 4, = u,,
¥, (1) for either loading takes the value of unity and k, , k, reduce to their respective limiting
values of p,/a and ¢,/a.

The function W,(1) has been calculated numerically for a range of the variables yu,/u,,
vy, v, and a/h. Figure 2 contains plots of the stress intensity factor, normalized by the
Griffith’s solutions for a single material specimen of the same geometry, (k,/p,/a), against
the ratio of the shear module (u,/u,) for various values of a/h. These graphs are for normal
loading with both material Poisson’s ratios equal (v, = v, = 0-3). The intensity factor
increases as the relative shear modulus of the matrix to that of the layer (u,/u,) decreases.
This effect is amplified as the ratio of the crack length to layer thickness increases. Note
that all curves go through the point (1, 1) representing the Griffith configuration for a single
material plate. The same data is plotted against a/h in Fig. 3. In the limit as a/h approaches
1.0, k/p./a approaches infinity for u,/u, < 1.0 and zero for u,/u; > 1-0. The limiting cases

(33)
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of uy/u; = 0, co have been calculated by Sneddon [6]. They represent a “stress-free” strip
and a “constrained” strip, respectively.

The effect of different values of the Poisson’s ratio for each constituent of the composite
is demonstrated in Figs. 4-7. When the value of the Poisson’s ratio for the layer is below
that for the matrix, the graphs of k, /p,/a against p,/p, are shifted to the left,i.e. at u,/p, = 1-0
the normal stress intensity factor is less than 1.0. The opposite effect is observed when
v, < V.

Results for the case of shearing tractions are presented in Figs. 8 and 9. Note that the
same gross effects are observed.

DISCUSSION OF RESULTS

Our purpose in solving this problem is to enable the prediction of failure for laminates
in terms of the size and orientation of the “worst” flaw or crack within a layer of the
composite. In general, the flaw or crack direction relative to the bond lines is unknown.
Thus, for a given stress state, one would like to know the stress intensity factor for a crack of
arbitrary angle. Failure prediction would then be based on the maximum value for the
stress intensity factor associated with the “worst” crack angle.

Because of the lack of symmetry of the arbitrarily oriented crack problem, an analytical
solution to the problem would be most difficult, if not impossible. However, valuable
information can be gained from the knowledge of the solutions to the two extreme cases of a
crack parallel to the bond lines (considered by the authors in a previous paper [7]) and one

Normal Tractions
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K /pVT

0.6}—

Q
>
I

1 | i 1 1
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F1G. 4. Plot of k,/p\/a vs. p,/p, for v; = 0-2 and v, = 04.
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Shear Tractions
v *y =03

ko /q VT

7

1 | ] | ]
o] 0.2 0.4 06 0.8 10

a’h

Fi1G. 9. Variation of k,/g./a with a/k for v, = v, = 0.3.

normal to them as dealt with here. For the case of normally applied tractions, the results
for the two foregoing cases are displayed in Figs. 10 and 11 for a number of layer width to
crack length ratios, h/a. For short cracks, i.e. h/a » 1.0, the effect of the composite structure
on a crack parallel to the material interface is more severe than on one normal to it. As the
relative crack length increases, the influence of the bond lines on the crack tip for the normal
crack appears to take over and the composite effect on this case becomes increasingly
stronger than for the parallel crack. In the limit as h/a approaches 1.0 the order of the
stress singularity for the normal crack becomes dependent on the material properties and the
problem has to be reformulated.

As mentioned earlier, it is not yet possible to get the solutions for a crack of intermediate
angles to the bond lines; however, it is reasonable to anticipate that these results will lie
between the two special cases. An approximate formula for cracks at intermediate angles
which is based on Mohr’s circle will be presented next.

Consider a line crack in an infinite region of one material, oriented at an angle « from
the horizontal axis Fig. 12(a). For applied biaxial stress 3’ and 5°, the stress intensity factors
are given by [4]

o0 o]

ky(a) = [a, ;—a, +2 ;a" cos 2a]\/a

k(o) = [9;0;—”’0‘0 sin 2a}/a. (34)
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1

e
-0y

F16. 12{a). Crack in an infinite, single material, plate subjected to biaxial tension.

These equations can be rewritten in the form

(1) 2) (1) _ [(2)
ky(@) = [k ';'k(x ]+[k1 2"1 JCOSZm

(1) _ 1(2)
k(o) = E‘L—zl‘—‘—}-sin 2u (35

where k{) = k,(0°) and kP = k,(90°).

This demonstrates that, for the single-material problem, it is sufficient to know the stress
intensity factors for cracks oriented along two orthogonal planes and further that, with this
knowledge, the Mohr’s circle technique can be employed to find the stress intensity factor
for a crack directed at any other angle to the loading.

Referring now to the problem of a crack in a layer between two half-planes of a second
elastic material, Fig. 12(b), the values for the stress intensity factors have been presented for
the cases of normal loading with the crack either parallel to [7] or perpendicular to the
bond lines. An approximation for the stress intensity factors for a crack oriented « degrees
from the bond lines, Fig. 12(b), is given by the Mohr’s circle technique, ic.

(1) 4 L2 (1) _ 2
k(o) = (ky ;k’ )«i—(k1 5 ki )cos 20

(1) __ 1 (2)
ky(o) = ‘ &—E—k—‘——lsin 20

(35)

%%W/}
P

%////%

F1G. 12(b}. Crack at arbitrary angle in a sandwiched layer subjected to biaxial tension.
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where ki is the stress intensity factor for a crack parallel to the bond lines with normal
pressure p = o and k{? is that for a crack normal to the bond lines subjected to pressure
p = o Typical results for k,(6) are shown in Fig. 11 for the case p = g7 = g;° with
h/a = 2-5. A caution is required here. For a crack at arbitrary angle, a, the normal and shear
modes of failure are interdependent, thus, any meaningful fracture criteria must take into
account both k,(«) and k,(«). Reference is made to [4].

Equations (35) are exact in the limit as h/a approaches infinity for any material properties;
as well as, for the special case u,/u, = 1, v; = v,. It is expected that their accuracy will
decrease as the actual problem deviates increasingly from both these limiting cases. The
range of applicability of these approximate equations is not yet known.
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AGcrpaxT—Hccnenyerca nepepacnpefesicHue HAPSKEHHH B CIONCTOM TeJi€, BCICACTBAC HAMHYMA IHEIH
Hu AedexTa, pacrnoIOKEHHOTO HOPMAJNLHO K JIMHMHAM OrDaHHMYeHHAs. MHOTO-CIIONCTOE TEJIO MOCAITH3M
pyeTcs IS Clydas OJMHOYHOTO CJIOS M3 Pa3/IMYHOTO MAaTepHana, COAEPKAIOMEro meilb. JTOT CIIOH
HaXOQUTCA MEXY ABYMSA CJIOAMH OGeCKOHEYHOM BBICOTHI. YIIDYrHe CBOKCTBA ABYX BHEIIHHX CJIOEB PHHUMA-
FOTCH B CMBICTIE CPEHUX CBOHCTB 6ombMOro yKcia ciroes. [1onb3yack METOAOM HETErpanbHOrO npeobpaso-
Bauus GopMynHpyercsa 3aaa4a B MHTETPaNbHEIX YPABHEHHAX H PEIUAETCA 1)1 CHHTYJIAPHOTO MOJIA HAaIpsik-
ennlt, BOMM3n xoHua wemn. MiunocTpupyiotcs, rpadmryeckd, 3¢h¢deKkThl pazMepa INenH, BHICOTHI CJIOS H
¢cBOHCTB Ma TepHANIA OTHAENBHBIX CI0EB Ha GAKTOP MHTEHCHBHOCTH Hanpspkenuit. [Tosuaumy sToT daxTop
MOXHO MCIOJIb30BATh IJIS XapaKTEPMCTHUKH CONPOTHBIIEHHS CJIOHCTHIX MaTEPHAJIOB TEMXE NyTeM, Kak
MPKHUMAETCA YAAYHO AJTA OQHO-(a30BOro MaTepHana, B paMKax JMHEAHOR TeOPHH MEXaBHKH Pa3pylICHUs .

TIpoBonsiTcst pacuers! s NpubimkeHus GakxTOPOB MHTEHCHBHOCTH HANPSKCHEM IUTA INEH, PACHONo-
KEHHO# HA MPOH3BONBHOM TOYKE CAHABHYEBHIX CIIOEB. JTO AOCTHIAeTCd IYTEM HCIONbL30BAHHA ABYX
IKCTPEMANIBHBIX CIYYaeB LIENIH IApajUleNbHO# H HOpPManbHOM K IIOBEPXHOCTH pa3ziena, Kak BEP3HHA H
HHXKHHUHR npenen peuieHHi, 3aBHCHMEBIX OT OTHOCHTENBHON XKECTKOCTH CJIOEB.



